The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name
FROTH-PAK™ Sealant 620 HFC BF

COMPANY IDENTIFICATION
The Dow Chemical Company
2030 Willard H. Dow Center
Midland, MI 48674
United States

Customer Information Number: 800-258-2436
SDSQuestion@dow.com

EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 989-636-4400
Local Emergency Contact: 989-636-4400

2. Hazards Identification

Emergency Overview
Color: Yellow
Physical State: Liquid.
Odor: Characteristic
Hazard of product:

CAUTION! May cause eye irritation. May be harmful if inhaled. Vapor reduces oxygen available for breathing. May cause anesthetic effects. May cause central nervous system effects; may cause respiratory tract irritation. Isolate area. Keep upwind of spill. Contents under pressure.

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Potential Health Effects
Eye Contact: May cause slight eye irritation. May cause slight temporary corneal injury.
Skin Contact: Prolonged contact may cause slight skin irritation with local redness.
Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.
Inhalation: Prolonged excessive exposure may cause adverse effects. In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. Excessive exposure may increase sensitivity to epinephrine and increase myocardial irritability (irregular heartbeats). Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Signs and symptoms of excessive exposure may include: May cause lacrimation (tears). Salivation. Convulsions. Tremors. Increased activity (hyperactivity).

Aspiration hazard: Based on physical properties, not likely to be an aspiration hazard.

Effects of Repeated Exposure: Contains a component which is reported to be a weak organophosphate-type cholinesterase inhibitor. Excessive exposure may produce organophosphate type cholinesterase inhibition. Signs and symptoms of excessive exposure may be headache, dizziness, incoordination, muscle twitching, tremors, nausea, abdominal cramps, diarrhea, sweating, pinpoint pupils, blurred vision, salivation, tearing, tightness in chest, excessive urination, convulsions. Contains component(s) which have been reported to cause effects on the following organs in animals: Heart.

Birth Defects/Developmental Effects: Contains component(s) which, in laboratory animals, have been toxic to the fetus at doses nontoxic to the mother. Contains component(s) which, in laboratory animals, have been toxic to the fetus only at doses toxic to the mother.

Reproductive Effects: In animal studies on component(s), effects on reproduction were seen only at doses that produced significant toxicity to the parent animals.

3. Composition Information

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>811-97-2</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>Glycerol propylene oxide polymer</td>
<td>25791-96-2</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>Polyester polyol, aromatic</td>
<td>Not available</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>Sucrose , propylene oxide</td>
<td>9049-71-2</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>Tris(1-chloro-2-propyl) phosphate</td>
<td>13674-84-5</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>1,1,1,3,3 - Pentafluoropropane</td>
<td>460-73-1</td>
<td>>= 1.0 - <= 10.0 %</td>
</tr>
<tr>
<td>Triethyl phosphate</td>
<td>78-40-0</td>
<td>>= 1.0 - <= 5.0 %</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>107-21-1</td>
<td>> 0.1 - < 1.0 %</td>
</tr>
</tbody>
</table>

4. First-aid measures

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Skin Contact: Wash skin with plenty of water.

Eye Contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist.

Ingestion: Do not induce vomiting. Call a physician and/or transport to emergency facility immediately.

Most important symptoms and effects, both acute and delayed

Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), no additional symptoms and effects are anticipated.

Indication of immediate medical attention and special treatment needed
Maintain adequate ventilation and oxygenation of the patient. This material is a cholinesterase inhibitor. Treat symptomatically. In case of severe acute poisoning, use antidote immediately after establishing an open airway and respiration. Atropine, only by injection, is the preferable antidote. Oximes, such as 2-PAM/protapam, may be therapeutic if used early; however, use only in conjunction with atropine. Attempt seizure control with diazepam 5-10 mg (adults) intravenous over 2-3 minutes. Repeat every 5-10 minutes as needed. Monitor for hypotension, respiratory depression, and need for intubation. Consider second agent if seizures persist after 30 mg. If seizures persist or recur administer phenobarbital 600-1200 mg (adults) intravenous diluted in 60 ml 0.9% saline given at 25-50 mg/minute. Evaluate for hypoxia, dysrhythmia, electrolyte disturbance, hypoglycemia (treat adults with dextrose 100 mg intravenous). If exposed, plasma and red blood cell cholinesterase tests may indicate significance of exposure (baseline data are useful). Exposure may increase “myocardial irritability”. Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. Fire Fighting Measures

Suitable extinguishing media
Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Extinguishing Media to Avoid: Do not use direct water stream. May spread fire.

Special hazards arising from the substance or mixture
Hazardous Combustion Products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Carbon monoxide. Carbon dioxide. Hydrogen halides.

Unusual Fire and Explosion Hazards: Container may rupture from gas generation in a fire situation. Blowing agent vaporizes quickly at room temperature. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids.

Advice for firefighters
Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Use water spray to cool fire exposed containers and fire affected zone until fire is out and danger of reignition has passed. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Do not use direct water stream. May spread fire. Move container from fire area if this is possible without hazard. Burning liquids may be moved by flushing with water to protect personnel and minimize property damage. Contain fire water run-off if possible. Fire water run-off, if not contained, may cause environmental damage. Review the “Accidental Release Measures” and the “Ecological Information” sections of this (M)SDS.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

6. Accidental Release Measures

Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Spilled material may cause a slipping hazard. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection. Keep personnel out of confined or poorly ventilated areas. Keep upwind of spill. Ventilate area of leak or spill. Confined space entry procedures must be followed before entering the area. Refer to Section 7, Handling, for additional precautionary measures.
Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Sand. Sawdust. Collect in suitable and properly labeled containers. Wash the spill site with water. See Section 13, Disposal Considerations, for additional information.

7. Handling and Storage

Handling
General Handling: Avoid contact with eyes. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use only with adequate ventilation. This material is hygroscopic in nature. Contents under pressure. Do not puncture or incinerate container. Do not enter confined spaces unless adequately ventilated. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Other Precautions: Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Storage
Store under cover in a dry, clean, cool, well ventilated place away from sunlight. Blowing agent may migrate from product and accumulate in some storage situations.

Storage Period: 15 Months
Storage temperature: 24 °C

8. Exposure Controls / Personal Protection

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>AIHA WEEL</td>
<td>TWA</td>
<td>4,240 mg/m3 1,000 ppm</td>
</tr>
<tr>
<td>1,1,1,3,3- Pentafluoropropane</td>
<td>AIHA WEEL</td>
<td>TWA</td>
<td>1,644 mg/m3 300 ppm</td>
</tr>
<tr>
<td>Triethyl phosphate</td>
<td>AIHA WEEL</td>
<td>TWA</td>
<td>7.45 mg/m3</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>ACGIH</td>
<td>Ceiling Aerol.</td>
<td>100 mg/m3</td>
</tr>
</tbody>
</table>

Personal Protection

Eye/Face Protection: Use safety glasses (with side shields).

Skin Protection: Wear clean, body-covering clothing.

Hand protection: Use gloves chemically resistant to this material when prolonged or frequently repeated contact could occur. Examples of preferred glove barrier materials include: Chlorinated polyethylene. Polyethylene. Ethyl vinyl alcohol laminate (“EVAL”). Polyvinyl alcohol (“PVA”). Styrene/butadiene rubber. Viton. Examples of acceptable glove barrier materials include: Butyl rubber. Natural rubber (“latex”). Polyvinyl chloride (“PVC” or “vinyl”). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use an approved respirator. When respiratory protection is required, use an approved positive-pressure self-contained breathing apparatus or positive-pressure airline with auxiliary self-
contained air supply. For emergency conditions, use an approved positive-pressure self-contained breathing apparatus. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure air line with auxiliary self-contained air supply.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls
Ventilation: Use engineering controls to maintain airborne level below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use only in enclosed systems or with local exhaust ventilation. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. Lethal concentrations may exist in areas with poor ventilation.

9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Liquid.</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquid.</td>
</tr>
<tr>
<td>Color</td>
<td>Yellow</td>
</tr>
<tr>
<td>Odor</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>No test data available</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Melting Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>> 100 °C (> 212 °F) Estimated.</td>
</tr>
<tr>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Acetate = 1</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>Lower: No test data available</td>
</tr>
<tr>
<td>Flammable Limits in Air</td>
<td>Upper: No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.18 Calculated</td>
</tr>
<tr>
<td>Solubility in water (by weight)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Partition coefficient, n-octanol/water (log Pow)</td>
<td>No data available for this product. See Section 12 for individual component data.</td>
</tr>
<tr>
<td>Autoignition Temperature</td>
<td>No test data available</td>
</tr>
<tr>
<td>Decomposition</td>
<td>No test data available</td>
</tr>
<tr>
<td>Temperature</td>
<td>2.240 cSt ASTM D4878</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not explosive</td>
</tr>
<tr>
<td>Oxidizing properties</td>
<td>No</td>
</tr>
</tbody>
</table>

10. Stability and Reactivity

Reactivity
No dangerous reaction known under conditions of normal use.

Chemical stability
Stable under recommended storage conditions. See Storage, Section 7.

Possibility of hazardous reactions
Polymerization will not occur by itself.

Conditions to Avoid: Product can oxidize at elevated temperatures. Elevated temperatures can cause pressure buildup in closed containers due to the release of blowing agents. Generation of gas during decomposition can cause pressure in closed systems.
Incompatible Materials: Avoid contact with oxidizing materials. Avoid contact with: Strong acids. Strong bases. Avoid unintended contact with isocyanates. The reaction of polyols and isocyanates generates heat.

Hazardous decomposition products
Decomposition products depend upon temperature, air supply and the presence of other materials. Decomposition products can include and are not limited to: Carbon dioxide. Alcohols. Ethers. Hydrocarbons. Hydrogen halides. Ketones. Polymer fragments.

11. Toxicological Information

Acute Toxicity
Ingestion
As product: Single dose oral LD50 has not been determined. Estimated. LD50, rat > 2,000 mg/kg
Dermal
As product: The dermal LD50 has not been determined. Estimated. LD50, rabbit > 2,000 mg/kg
Inhalation
As product: The LC50 has not been determined.

Eye damage/eye irritation
May cause slight eye irritation. May cause slight temporary corneal injury.

Skin corrosion/irritation
Prolonged contact may cause slight skin irritation with local redness.

Sensitization
Skin
No relevant data found.
Respiratory
No relevant data found.

Repeated Dose Toxicity
Contains a component which is reported to be a weak organophosphate-type cholinesterase inhibitor. Excessive exposure may produce organophosphate type cholinesterase inhibition. Signs and symptoms of excessive exposure may be headache, dizziness, incoordination, muscle twitching, tremors, nausea, abdominal cramps, diarrhea, sweating, pinpoint pupils, blurred vision, salivation, tearing, tightness in chest, excessive urination, convulsions. Contains component(s) which have been reported to cause effects on the following organs in animals: Heart.

Chronic Toxicity and Carcinogenicity
No relevant data found.

Developmental Toxicity
Contains component(s) which, in laboratory animals, have been toxic to the fetus at doses nontoxic to the mother. Contains component(s) which, in laboratory animals, have been toxic to the fetus only at doses toxic to the mother.

Reproductive Toxicity
In animal studies on component(s), effects on reproduction were seen only at doses that produced significant toxicity to the parent animals.

Genetic Toxicology
Genetic toxicity studies on tested components were predominantly negative. Contains component(s) which were negative in some animal genetic toxicity studies and positive in others.

12. Ecological Information

Toxicity
Data for Component: 1,1,1,2-Tetrafluoroethane
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Oncorhynchus mykiss (rainbow trout), static test, 96 h: 450 mg/l
Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), 48 h, immobilization: 980 mg/l

Data for Component: **Glycerol propylene oxide polymer**
For this family of materials: Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Aquatic Invertebrates Chronic Toxicity Value
Daphnia magna (Water flea), semi-static test, 21 d, mortality, NOEC: >= 10 mg/l, LOEC: > 10 mg/l

Data for Component: **Polyester polyol, aromatic**
For similar material(s): Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Data for Component: **Sucrose , propylene oxide**
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Danio rerio (zebra fish), static test, 96 h: 6,310 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), static test, 48 h, immobilization: 9,890 mg/l

Aquatic Plant Toxicity
NOEC, Desmodesmus subspicatus (green algae), static test, biomass growth inhibition, 72 h: 100 mg/l

Aquatic Invertebrates Chronic Toxicity Value
Daphnia magna (Water flea), semi-static test, 21 d, mortality, NOEC: >= 10 mg/l, LOEC: > 10 mg/l

Data for Component: **Tris(1-chloro-2-propyl) phosphate**
Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Lepomis macrochirus (Bluegill sunfish), static test, 96 h: 84 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), 48 h, immobilization: 131 mg/l

Aquatic Plant Toxicity
ErC50, Pseudokirchneriella subcapitata (green algae), static test, Growth rate inhibition, 96 h: 82 mg/l

Toxicity to Micro-organisms
EC50, activated sludge test (OECD 209), Respiration inhibition, 3 h: 784 mg/l

Aquatic Invertebrates Chronic Toxicity Value
Daphnia magna (Water flea), semi-static test, 21 d, number of offspring, NOEC: 32 mg/l, LOEC: > 32 mg/l

Data for Component: **1,1,1,3,3 - Pentafluoropropane**
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Oncorhynchus mykiss (rainbow trout), semi-static test, 96 h: > 100 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), static test, 48 h, immobilization: > 100 mg/l

Aquatic Plant Toxicity
ErC50, Pseudokirchneriella subcapitata (green algae), static, Growth rate inhibition, 72 h: > 118 mg/l

Aquatic Invertebrates Chronic Toxicity Value
Daphnia magna (Water flea), semi-static test, 14 d, mortality, NOEC, NOEC: 29 mg/l

Data for Component: **Triethyl phosphate**
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Leuciscus idus (Golden orfe), static test, 48 h: 2,140 mg/l
Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), static test, 48 h, immobilization: 350 mg/l

Aquatic Plant Toxicity
EC50, Desmodesmus subspicatus (green algae), Growth rate inhibition, 72 h: 900 mg/l

Toxicity to Micro-organisms
EC50, activated sludge test (OECD 209), Respiration inhibition, 30 min: > 2,985 mg/l

Data for Component: Ethylene glycol
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Pimephales promelas (fathead minnow), static test, 96 h: 72,860 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), static test, 48 h, immobilization: > 100 mg/l

Aquatic Plant Toxicity
ErC50, Pseudokirchneriella subcapitata (green algae), Growth rate inhibition, 96 h: 6,500 - 13,000 mg/l

Toxicity to Micro-organisms
EC50, activated sludge test (OECD 209), Respiration inhibition, 30 min: 225 mg/l

Persistence and Degradability

Data for Component: 1,1,1,2-Tetrafluoroethane
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

OECD Biodegradation Tests:
<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 %</td>
<td>28 d</td>
<td>OECD 301D Test</td>
<td>fail</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals
<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.20E-15 cm3/s</td>
<td>1,700 d</td>
<td>Estimated.</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 0.47 mg/mg

Data for Component: Glycerol propylene oxide polymer
For this family of materials: Based on stringent OECD test guidelines, this material cannot be considered as readily biodegradable; however, these results do not necessarily mean that the material is not biodegradable under environmental conditions. Material is ultimately biodegradable (reaches > 70% biodegradation in OECD test(s) for inherent biodegradability).

Data for Component: Polyester polyol, aromatic
No relevant data found.

Data for Component: Sucrose , propylene oxide
Based on information for a similar material: Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability).

Data for Component: Tris(1-chloro-2-propyl) phosphate
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

OECD Biodegradation Tests:
<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 %</td>
<td>28 d</td>
<td>OECD 301E Test</td>
<td>fail</td>
</tr>
<tr>
<td>95 %</td>
<td>64 d</td>
<td>OECD 302A Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals
<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.47E-11 cm3/s</td>
<td>0.24 d</td>
<td>Estimated.</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 1.17 mg/mg

Data for Component: 1,1,1,3,3 - Pentafluoropropane
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

OECD Biodegradation Tests:
Biodegradation

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 %</td>
<td>28 d</td>
<td>OECD 301D Test</td>
<td>fail</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.97E-14 cm³/s</td>
<td>360 d</td>
<td>Estimated.</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 0.60 mg/mg

Data for Component: Triethyl phosphate

Material is ultimately biodegradable (reaches > 70% biodegradation in OECD test(s) for inherent biodegradability).

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 90 %</td>
<td>28 d</td>
<td>OECD 302B Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 1.58 mg/mg

Data for Component: Ethylene glycol

Material is readily biodegradable. Passes OECD test(s) for ready biodegradability. Material is ultimately biodegradable (reaches > 70% biodegradation in OECD test(s) for inherent biodegradability).

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100 %</td>
<td>10 d</td>
<td>OECD 301A Test</td>
<td>pass</td>
</tr>
<tr>
<td>90 %</td>
<td>1 d</td>
<td>OECD 302B Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 1.29 mg/mg

Bioaccumulative potential

Data for Component: 1,1,1,2-Tetrafluoroethane

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): 1.68 Estimated.

Data for Component: Glycerol propylene oxide polymer

Bioaccumulation: No bioconcentration is expected because of the relatively high water solubility.

Data for Component: Polyester polyol, aromatic

Bioaccumulation: No bioconcentration is expected because of the relatively high molecular weight (MW greater than 1000).

Data for Component: Sucrose, propylene oxide

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): -3.38 - -3.25 Estimated.

Data for Component: Tris(1-chloro-2-propyl) phosphate

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): 2.59 Measured

Bioconcentration Factor (BCF): 0.8 - 4.6; Cyprinus carpio (Carp); Measured

Data for Component: 1,1,1,3,3-Pentafluoropropane

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): 1.35 Measured

Data for Component: Triethyl phosphate

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): 0.80 Measured

Data for Component: Ethylene glycol

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): -1.36 Measured

Mobility in soil

Data for Component: 1,1,1,2-Tetrafluoroethane

Mobility in soil: Potential for mobility in soil is high (Koc between 50 and 150).

Partition coefficient, soil organic carbon/water (Koc): 97 Estimated.

Henry’s Law Constant (H): 5.00E-02 atm*m³/mole; 25 °C Measured
Data for Component: **Glycerol propylene oxide polymer**
Mobility in soil: No data available.

Data for Component: **Polyester polyol, aromatic**
Mobility in soil: No data available.

Data for Component: **Sucrose , propylene oxide**
Mobility in soil: No data available.

Data for Component: **Tris(1-chloro-2-propyl) phosphate**
Mobility in soil: Potential for mobility in soil is slight (Koc between 2000 and 5000).
Partition coefficient, soil organic carbon/water (Koc): 1,300 Estimated.
Henry’s Law Constant (H): < 1.35E-05 atm*m3/mole; 25 °C Estimated.

Data for Component: **1,1,1,3,3 - Pentafluoropropane**
Mobility in soil: Potential for mobility in soil is medium (Koc between 150 and 500).
Partition coefficient, soil organic carbon/water (Koc): 280 Estimated.
Henry’s Law Constant (H): 6.89E-02 atm*m3/mole; 25 °C Estimated.

Data for Component: **Triethyl phosphate**
Mobility in soil: Potential for mobility in soil is very high (Koc between 0 and 50)., Given its very low Henry’s constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.
Partition coefficient, soil organic carbon/water (Koc): 48 Estimated.
Henry’s Law Constant (H): 3.60E-08 atm*m3/mole; 25 °C Measured

Data for Component: **Ethylene glycol**
Mobility in soil: Given its very low Henry’s constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process., Potential for mobility in soil is very high (Koc between 0 and 50).
Partition coefficient, soil organic carbon/water (Koc): 1 Estimated.
Henry’s Law Constant (H): 8.05E-09 atm*m3/mole; 25 °C Estimated.

Distribution in Environment: Mackay Level 1 Fugacity Model:

<table>
<thead>
<tr>
<th>Air</th>
<th>Water.</th>
<th>Biota</th>
<th>Soil</th>
<th>Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03 %</td>
<td>100 %</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer. Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section 10 Regulatory Information, MSDS Section 15

14. Transport Information

DOT Non-Bulk
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2
ID Number: UN3500

DOT Bulk
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500

IMDG
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500
EMS Number: F-C,S-V
Marine pollutant: No

ICAO/IATA
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500
Cargo Packing Instruction: 218
Passenger Packing Instruction: 218

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard
This product is a “Hazardous Chemical” as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
Immediate (Acute) Health Hazard Yes
Delayed (Chronic) Health Hazard No
Fire Hazard No
Reactive Hazard No
Sudden Release of Pressure Hazard Yes

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
WARNING: This product contains a chemical(s) known to the State of California to cause cancer.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Dioxane</td>
<td>123-91-1</td>
<td><= 0.016 %</td>
</tr>
</tbody>
</table>

US. Toxic Substances Control Act
All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

CEPA - Domestic Substances List (DSL)
All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.
16. Other Information

Hazard Rating System

<table>
<thead>
<tr>
<th>NFPA</th>
<th>Health</th>
<th>Fire</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Revision
Identification Number: 1042556 / 1001 / Issue Date 12/18/2013 / Version: 5.0
Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend
N/A Not available
W/W Weight/Weight
OEL Occupational Exposure Limit
STEL Short Term Exposure Limit
TWA Time Weighted Average
ACGIH American Conference of Governmental Industrial Hygienists, Inc.
DOW IHG Dow Industrial Hygiene Guideline
WEEL Workplace Environmental Exposure Level
HAZ DES Hazard Designation
Action Level A value set by OSHA that is lower than the PEL which will trigger the need for activities such as exposure monitoring and medical surveillance if exceeded.

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer’s/user’s responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer’s/user’s duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.